Homework 5 - due Monday, August 7 at 10:00 AM

A real vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars(real numbers), subject to the ten axioms (or rules) listed below. The axioms must hold for all vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} in V and for all scalars c and d.

1. The sum of \mathbf{u} and \mathbf{v}, denoted by $\mathbf{u}+\mathbf{v}$, is in V .
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$.
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$.
4. There is a zero vector $\mathbf{0}$ in V such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$.
5. For each \mathbf{u} in V, there is a vector $\mathbf{- u}$ in V such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.
6. The scalar multiple of \mathbf{u} by c , denoted $\mathrm{c} \mathbf{u}$, is in V .
7. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+\mathrm{c} \mathbf{v}$.
8. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$.
9. $c(d \mathbf{u})=(\mathrm{cd}) \mathbf{u}$.
10. $1 \mathbf{u}=\mathbf{u}$.

Vector Spaces and Linear Transformations Practice

Make sure to justify your solution for each problem.

1. Let W be the set of points on the line $y=2 x+1$. That is, let

$$
W=\left\{\left[\begin{array}{l}
x \\
y
\end{array}\right]: y=2 x+1\right\}
$$

Is W a vector space? Prove or disprove.
2. Prove that the set of all rational numbers is NOT a vector space over \mathbb{R}.
3. Prove that the map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ that maps a vector \mathbf{v} to the vector $\mathbf{0}$ is a linear transformation.
4. Suppose that T is the linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{5}$ that maps a vector

$$
\mathbf{v}=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right] \text { to }\left[\begin{array}{c}
-v_{1}-7 v_{3} \\
v_{2} \\
v_{1} \\
0 \\
v_{2}-v_{3}
\end{array}\right]
$$

Find a matrix A such that $T(\mathbf{v})=A \mathbf{v}$.
5. Is the vector $\mathbf{w}=\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]$ in $\operatorname{Span}\left\{\left[\begin{array}{c}-4 \\ 7 \\ 8\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right\}$?
6. Let $\mathbf{A}=\left[\begin{array}{cccc}2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{c}3 \\ -2 \\ -1 \\ 0\end{array}\right]$.
(a) Determine if \mathbf{u} is in $N u l A$.
(b) Could \mathbf{u} be in ColA?

